Ремонт зарядного устройства фонарика

Ремонт китайского фонарика TrustFire XM-L Z5

Анекдот (вместо эпиграфа). Профессор читает лекцию студентам:… как видите, данное технологическое решение простое, понятное, и очень надёжное. По этим причинам оно и не используется. На практике применяют другую технологию, которую мы с вами будем изучать в течение следующих пары месяцев.

Этот недешевый в общем-то фонарик принесли в практически идеальном внешне состоянии, что говорит о его явно безвременной кончине. И дважды сдохшим изнутри.

Первый раз он почил когда сгорела электроника токового драйвера — вполне закономерно для экстремального режима на предельных нагрузках. После чего над ним поработал видимо «умелец», пустив питание кристалла напрямую — в результате выгорел и сам светодиод.

Изготовители старательно запилили маркировку транзисторов и микросхем, наверное из чувства стыда за неоптимальный выбор компонентов. Но при этом не удосужились облудить медные ободки на плате выключателя (слева, показан красной стрелкой), и на «пятаке» платы драйвера — которые контачат с алюминиевым корпусом. Пришлось сделать это самому, чтоб предотвратить разрушение металлов в образовавшейся гальванопаре. Выгоревший кристалл был демонтирован при помощи промышленного фена. Вместо него запаял свежеприобретенный OS-Star-5W Warm White 3000K 300Lm, рассчитанный на ток 0.7А с падением напряжения 6v на светодиоде. В фонарике он будет использоваться на пониженной мощности, с целью продления ресурса светодиода и времени автономной работы фонаря от АКБ.

Тестируем новый кристалл. Его теплоотводный «пятак» тоже припаял к подложке для улучшения теплоотдачи, но как оказалось в дальнейшем, на выбранном рабочем токе 0.2А фонарь практически не греется. Вольтметр (слева) показывает падение напряжения на светодиоде, подключенном к лабораторному источнику питания через ограничительный резистор.

Драйвер восстанавливать заморочно и бессысленно, да и как показано ниже — даже вредно по факторам надежности и КПД в случае применения фонаря для повседневных целей. Поэтому пятак был очищен от радиодеталей, а для ограничения тока светодиода в районе 0.2А на полных батареях использован резистор сопротивлением 10 Ом.

На фото рядом два резистора по 5.1 Ом, аналогичные тем что упакованы в термоусадку. Там они соединены там последовательно, т.к. резистора на 10 Ом не оказалось под рукой.

После промывки от флюса и сборки светодиодного узла, фонарик был поставлен на испытания. Аккумуляторы 18650 не «родные», выдранные из батблока отслужившего свой срок ноутбука. Тем не менее какой-то запас емкости в них еще остался. Перед началом прогона они были заряжены до напряжения 4.12v каждый.

Потребляемый ток замерялся каждый час. Через 7 часов непрерывной работы напряжение аккумуляторов снизилось до 3.6v, что говорит о еще не окончательном их разряде, но уже близко к этому. При этом фонарик достаточно ярко освещает помещение, а на улице хорошо просвечивает более чем на полсотни меторв. Таким образом изделие восстановлено, и соответствует пожеланиям заказчика.

Расчеты и обоснование

В оригинале был применен светодиод с падением напряжения на нем 3v. В сводной таблице указан ток светодиода в различных режимах работы фонаря, и ток потребления от источника питания. Первоисточник информации из форума, и из вот этого обзора

На основе этих данных можно посчитать коэффициент экономии энергии батарей в оригинальной конструкции фонаря:
Kэ = Iсд / Iпит

  • максимальный — 2.05
  • средний — 1.78
  • минимальный — 1.63

На новом установленном светодиоде падение напряжения уже 6v, он конструктивно состоит из двух трехвольтовых секций, включенных последовательно. А значит и количество излучаемого света при одном и том же протекающем токе, у него в два раза больше чем у оригинального трехвольтового.

Читайте также:  Ремонт и содержание жилья курск тарифы

Ток потребления схемы с резисторным ограничителем находится в пределах от 0.21 до 0.13 А, в зависимости от степени разряда батарей. Но с учетом удвоения излучаемого света, световой поток даже на разряжающихся акб заметно больше, чем у оригинальной схемы в минимальном (экономичном) режиме. Для резисторного ограничителя ток потребляемый от батарей и ток СД — одинаковы. Но можно посчитать КПД, как отношение мощности подводимой к СД к общей мощности потребляемой всей схемой.

Итак КПД высоконадежного фонаря с резистором вместо импульсного драйвера, на полностью заряженной батарее — 74%, а на разряжающейся — 81%.

Для расчета КПД в оригинальной конструкции с импульсной запиткой, примем падение напряжения на СД 3.1v, а ток светодиода не меняется по мере разряда АКБ.

Получается что на небольшой мощности для повседневных нужд — оптимальнее правильный подбор светодиода, и применение простого и надежного резисторного ограничения тока. Такой подход обеспечивает больший КПД использования энергии батарей, по сравнению с запиткой через импульсный драйвер. А также многолетний ресурс безотказной работы, обусловленный надежностью схемы, и тем что в недогруженном режиме светодиод прослужит во много раз дольше.

Небольшое пояснение

Расчет КПД в схеме драйвером произведен без учета увеличения потребляемого тока по мере разряда батарей. Поэтому реальный КПД с импульсником на посаженных батареях окажется чуть меньше значений, указанных в последней таблице.

С драйвером ток светодиода поддерживается неизменным, и соответственно его яркость. Поэтому по мере разряда батарей, потребляемый от них ток начинает увеличиваться. Батареи будут садиться всё быстрее и быстрее.

С резистором же ситуация в точности наоборот — ток потребления снижается при разряде батарей, и т.о. позволяет протянуть на одной зарядке раза в полтора… два примерно дольше, чем если б было с драйвером. Конечно это достигается ценой некорого снижения яркости, но в такой ситуации лучше чтоб хоть немного да светило, чем вообще никак.

Вариант использовать вместо резистора проходной стабилизатор тока на ИМС или полевом транзисторе — рассматривал, но тоже отклонил т.к. сокращается время автономной работы по сравнению с резисторной схемой.

Выбор резистора был обусловлен разумным компромиссом между минимально необходимой освещенностью при разряде батарей, и стремлением по максимуму продлить время автономной работы фонаря. Что и было достигнуто — на посаженных батареях фонарь позволяет читать книжный текст, и дает вполне приемлимую освещенность для ориентирования на улице, «пробивая» десятки метров.

Источник



РЕМОНТ АККУМУЛЯТОРНОГО ФОНАРЯ

Научились китайцы делать ширпотреб и в частности фонарики. Такого изобилия форм, размеров, расцветок нет, пожалуй, ни в какой другой группе товаров. Дома их уже не меньше пяти штук, но купил ещё один. И вовсе не из любопытства, посмотрел на него и воображение нарисовало картинку как в тёмное время суток включаю боковую панель, прикрепляю торцевой частью с магнитом к металлической гаражной двери, и при свете, не занятыми руками открываю замки. Сервис – «пять звёздочек»! Вот только фонарь предлагалось купить в нерабочем состоянии.

вид фонарика STE-15628-6LED

Характеристики фонарика STE-15628-6LED

  • 6 светодиодов (3 в отражателе + 3 в боковой панели)
  • 2 режима работы
  • встроенное ЗУ
  • магнит для крепления
  • размеры: 11х5х5 см
Читайте также:  О ремонте новорижского шоссе

Внешне абсолютно исправное и привлекательное изделие не создавало светового потока. Ну, разве возможно чтобы вот такая замечательная вещица была совершенно не на что не годной? Данная модель была в единственном экземпляре, но любитель электроники во мне «вещал», что всё преодолимо.

Разборка фонарика STE-15628-6LED

Провод оторвался при вскрытии корпуса, а вот опалённой пластмасса уже была и наводила на мысль, что подгорели электронные компоненты схемы зарядного устройства, а аккумулятор может быть и вполне исправным.

Как восстановить аккумулятор

С него и начал проверку. Напряжение на клеммах вольтметр показал равным одному вольту. Имея уже некоторый опыт общения с такими аккумуляторами начал с того, что открыл на нём верхнюю предохранительную планку, снял резиновые колпачки, долил в каждую «банку» по одному кубику дистиллированной воды и поставил на зарядку. Зарядное напряжение 12 В, ток 50 мА.

Зарядное напряжение аккумулятора 12 В

Зарядка в режиме повышенного напряжения (вместо штатных 4,7 В) длилась два часа, в наличии более 4 вольт.

РЕМОНТ АКБ АККУМУЛЯТОРНОГО ФОНАРЯ

Раз аккумулятор годный к эксплуатации то ему нужно зарядное устройство, собранное по более приличной схеме и на более надёжных электронных компонентах, нежели чем от китайского производителя, в котором «сгорел» резистор на входе, был пробит один из двух диодов 1N4007 выпрямителя и дымился при включении ЗУ резистор светодиода. В первую очередь необходимы надёжный конденсатор не менее чем на 400 вольт, диодный мост и подходящий стабилитрон на выходе.

Схема ЗУ фонаря

Схема ЗУ фонаря диодного

Составленная схема показала свою работоспособность, конденсатор ёмкостью в 1 мкФ и 400 В нашёл МБГО (куда ещё надёжней и в предполагаемый корпус вписывается удачно), диодный мост собран из 4 штук диодов 1N4007, стабилитрон на пробу взял первый попавшийся импортный (напряжение стабилизации определил приставкой к мультиметру, а вот название его прочитать не представилось возможным).

Схема ЗУ фонаря собранная

Далее схема была собрана при помощи пайки и использована для производства нормально цикла заряда, предварительно разряженного аккумулятора (миллиамперметр с шунтом, так что в действительности полное отклонение стрелки происходит при токе в 50 мА). Стабилитрон применён уже с напряжением стабилизации 5 В.

Китайский аккумуляторный LED фонарь - блок заряда

Печатная плата для окончательной сборки ЗУ с размерами под корпус зарядки от сотового телефона. Лучшего варианта корпуса тут и не придумать.

Китайский аккумуляторный фонарь- плата печатная

Вид реально собранной, работоспособной платы. Корпус конденсатора приклеен к плате клеем «мастер». А вот травить платку поленился, винюсь, случайно оказалась под рукой б/у практически нужного размера и это обстоятельство всё решило.

Китайский аккумуляторный LED фонарь и его схема

Зато не поленился заменить информационную наклейку на корпусе зарядки. При полностью заряженном аккумуляторе, в темноте, боковая панель вполне прилично освещает помещение размером 10 кв. метров, а свет от отражателя фары делает хорошо видимыми предметы на расстояние до 10 метров.

Сборка и проверка АККУМУЛЯТОРНОГО ФОНАРЯ

В дальнейшем предполагаю подобрать для фонаря более надёжный и мощный аккумулятор. Автор — Babay из Barnaula.

Источник

Ремонт зарядных устройств светодиодных аккумуляторных фонарей

В эксплуатации у населения находится достаточно много светодиодных аккумуляторных фонарей со встроенными зарядными устройствами (ЗУ), которые часто выходят из строя. В настоящей статье авторы делятся своим опытом ремонта светодиодных фонарей ФО-ДИК АН-0-005 и Космос А618LX.

Светодиодный фонарь ФО-ДИК АН-0-005 (фото 1) российского производства содержит пять светодиодов, аккумулятор на рабочее напряжение 4…4,5 В и встроенное сетевое зарядное устройство (ЗУ).

0

Принципиальная схема зарядного устройства фонаря ФО-ДИК АН-0-005 показана на рис.1.

Рис. 1

После непродолжительной эксплуатации фонарь перестал функционировать. При разборке устройства было обнаружено, что дорожки на миниатюрной печатной плате фонаря полностью выгорели, а высоковольтный диод VD2 (рис.1) вышел из строя. К сожалению, позиционные номера деталей на плате не указаны. Поэтому авторы, создавая схему рис.1, указали эти номера на ней произвольно.

Читайте также:  То и ремонт автомобилей для преподавания

Из собственного опыта, авторы предлагают следующие варианты замены элементов на плате:

  • высоковольтные диоды VD1, VD2 типа 1N4007 можно заменить КД105Б, В, Г или КД209Б, В; КД226В, Г, Д;
  • высоковольтный конденсатор С1 номиналом 0,68…1,5 мкФ х 400…630 В;
  • резисторы , типа МЛТ-0,25, R1 номиналом 560…620 кОм, R2 — 220…330 Ом;
  • светодиод HL1 любой миниатюрный.

При подключении к сети 220 В напряжение на аккумуляторе должно быть 4,5…5 В, а светодиод НL1 должен светиться.

На рис.2 показана схема зарядного устройства фонаря «Космос А618LX», в котором вышли из строя сверхъяркие светодиоды. Как видно из рис.2, схема этого фонаря отличается от схемы рис.1 только двухполупериодным выпрямителем на диодах VD1-VD4. Номиналы элементов аналогичны рис.1.

Рис. 2

Проанализировав обе схемы, можно сделать вывод, что если по какой-то причине вышел из строя аккумулятор фонаря или отпаялись его электроды, то при включении заряжаемого фонаря сетевое напряжение 220 В выведет из строя все сверхъяркие светодиоды фонаря. По этой причине при зарядке фонарей не рекомендуется включать (проверять) заряжаемый фонарь.

Автор: Олег Никитенко, Валентин Никитенко, г. Киев

Источник

Восстанавливаем и доводим до ума китайский фонарик.

У многих имеются различные китайские фонарики, работающие от одной батарейки. Типа такого:

К сожалению, они весьма недолговечны. О том, как вернуть фонарик к жизни и о некоторых простых доработках, способных улучшить подобные фонари — я расскажу далее.

Самое слабое место у подобных фонарей — кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.
Первый признак — фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.
Самый простой способ заставить такой фонарь светить — поступить следующим образом:

1. Берём тонкий многожильный провод, отрезаем одну жилку.
2. Накручиваем проводок на пружину.
3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать
над закручивающейся частью фонарика.
4. Плотно закручиваем. Излишек провода обламываем (отрываем).
В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик
засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому
включение — выключение фонарика производится поворотом головной части.
Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря
трогать не следует. Отворачиваем голову.

ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.

Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, который
просто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:

1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.
2. Теперь можно пинцетом выкрутить корпус с кнопкой.
3. Извлекаем кнопку.
4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.
На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).
Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.

Источник