Измерения кабелей связи при ремонт

Методы определения места повреждения кабеля

Повреждения в трехфазных кабельных линиях (КЛ) могут быть следующих видов:

  1. замыкание одной жилы на землю;
  2. замыкание двух или трех жил на землю либо двух или трех жил между собой;
  3. обрыв одной, двух или трех жил без заземления или с заземлением как оборванных, так и необорванных жил;
  4. заплывающий пробой, проявляющийся в виде КЗ (пробоя) при высоком напряжении и исчезающий («заплывающий») при номинальном напряжении.

Характер повреждения определяют с помощью мегомметра. Для этого с обоих концов линии проверяют:

  • сопротивление изоляции каждой жилы кабеля по отношению к земле (фазная изоляция), сопротивление изоляции жил относительно друг друга (линейная изоляция);
  • целостность токоведущих жил.

2. Методы определения зон повреждения кабельных линий

Выбор метода определения места повреждения кабеля зависит от характера повреждения, места прокладки и переходного сопротивления в месте повреждения. При повреждении КЛ ориентировочно определяют зону (место локализации) повреждения, и после этого различными методами уточняют место повреждения на трассе. Для более точного определения зоны повреждения поиск желательно выполнять с одного конца КЛ несколькими методами. Если такая возможность отсутствует, более точный результат дает поиск одним методом с обоих концов кабеля.

Для поиска зоны повреждения используют:

  • метод прожигания изоляции (разрушающий метод),
  • импульсный метод;
  • метод колебательного разряда;
  • метод петли;
  • емкостный метод.

Метод прожигания изоляции. В этом случае устанавливают место, где сопротивление между жилами или между жилой и оболочкой будет минимальным. Для уточнения места повреждения необходимо снизить переходное сопротивление до минимального предела. Для этого при помощи генератора высокой частоты или трансформатора выполняют прожигание изоляции. Процесс прожигания протекает по-разному, в зависимости от характера повреждения и состояния кабеля. Обычно через 15 – 20 с сопротивление уменьшается до нескольких десятков Ом. При увлажненной изоляции процесс проходит более длительно, и сопротивление удается уменьшить только до 2000 – 3000 Ом. В муфтах процесс прожигания кабеля проходит более длительно, иногда несколько часов, причем сопротивление резко меняется: то снижается, то снова возрастает, – пока не установится процесс, и сопротивление не начнет снижаться устойчиво. Это разрушающий метод определения места повреждения кабеля.

Импульсный метод применяется для определения зоны повреждения кабеля при переходном сопротивлении до 150 Ом в любых случаях, кроме заплывающего пробоя. Метод основан на измерении интервала времени между моментами подачи зондирующего импульса переменного тока и приема отраженного импульса от места повреждения. Скорость распространения импульсов в КЛ высокого и низкого напряжения – величина постоянная и равна V=160 м/мкс.

Поэтому по времени пробега импульса до места повреждения и обратно (Tx) определяют расстояние до точки повреждения кабеля (Lx, м):

Измерения производятся рефлектометрами (например, РЕЙС-105Р). На экране прибора имеется линия масштабных отметок и линия импульсов. По форме отраженного импульса можно судить о характере повреждения. Отрицательное значение отраженный импульс имеет при КЗ, положительное – при обрыве жил.

Метод колебательного разряда применяется при заплывающих пробоях кабелей. Для измерения на поврежденную жилу от испытательной установки подается напряжение, которое плавно поднимается до напряжения пробоя. В момент пробоя в кабеле возникает разряд колебательного характера. Период колебаний определяет расстояние до точки повреждения, так как электромагнитная волна распространяется в кабеле с постоянной скоростью. Измерения выполняются рефлектометрами.

Метод петли основан на измерении сопротивлений при помощи моста постоянного тока. Применение метода возможно при повреждении одной или двух жил кабеля и при наличии одной неповрежденной жилы. При повреждении трех жил можно использовать жилу рядом проложенного кабеля. Для этого поврежденную жилу накоротко присоединяют к целой жиле кабеля, образуя петлю. К противоположным концам жил присоединяют регулируемые сопротивления моста.

Равновесие моста будет при условии, о.е.:

Сопротивление жилы кабеля прямо пропорционально его длине, поэтому расстояние до точки повреждения, м:

где R1 и R2 – регулируемые сопротивления моста, Ом;

L – полная длина линии, м.

К недостаткам этого метода следует отнести большие затраты времени, меньшую точность, необходимость устанавливать «закоротки». Поэтому метод «петли» сейчас вытесняется другими методами: емкостным, импульсным методами, методом колебательного разряда и другими.

Методы непрерывно совершенствуются.

Емкостный метод применяется для определения расстояния от конца линии до места обрыва одной или нескольких жил КЛ путем измерения емкости кабеля. Метод основан на измерении емкости оборванной жилы с помощью моста переменного или постоянного тока, так как емкость кабеля зависит от его длины. При обрыве жилы кабеля без заземления измеряется емкость оборванной жилы с обоих концов. Считаем, что длина кабеля делится пропорционально измеренным емкостям С1 и С2, тогда:

После определения зоны повреждения в этот район для определения места повреждения направляется оператор, который использует акустический, индукционный метод или метод накладной рамки.

Акустический метод. Сущность акустического метода состоит в создании в месте повреждения искрового разряда и прослушивании на трассе звуковых колебаний, вызванных этим разрядом над местом повреждения. Этот метод применяют для обнаружения на трассе всех видов повреждения с условием, что в месте повреждения может быть создан электрический разряд и это место ориентировочно известно. Для возникновения устойчивого разряда необходимо, чтобы величина переходного сопротивления в месте повреждения превышала 40 Ом.

Слышимость звука на поверхности земли зависит от глубины залегания кабеля, плотности грунта, вида повреждения и мощности разрядного импульса. Возможная глубина прослушивания колеблется от 1 до 5 м. Применять этот метод для открыто проложенных кабелей, кабелей, проложенных в каналах и в туннелях, не рекомендуется, так как из-за хорошего распространения звука по металлической оболочке кабеля можно допустить большую ошибку в определении места повреждения.

В качестве генератора импульсов применяется кенотрон с дополнительным включением в схему высоковольтных конденсаторов и шарового разрядника. Вместо конденсаторов можно использовать емкость неповрежденных жил кабеля. В качестве акустического датчика используют датчики пьезомагнитной или электромагнитной системы, преобразующие механические колебания грунта в электрические сигналы, поступающие на вход усилителя звуковой частоты. Над местом повреждения сигнал наибольший.

Индукционный метод применяют для непосредственного отыскания мест повреждения кабеля на трассе:

  • при замыкании изоляции жил между собой или на землю;
  • при обрыве с одновременным пробоем изоляции между жилами или на земле;
  • для определения трассы и глубины залегания кабеля;
  • для определения местоположения соединительных муфт.

По этому методу на поверхности земли с помощью приемной рамки фиксируют изменения электромагнитного поля над кабелем при пропускании по нему тока от долей ампера до 20 А (звуковой частоты 800÷1200 Гц). Диапазон определяется в зависимости от наличия помех и глубины залегания кабеля. ЭДС, наводимая в рамке, зависит от распределения тока в кабеле и взаимного пространственного расположения рамки и кабеля. Зная характер изменения поля, можно по ориентации рамки определить трассу прохождения и место повреждения кабеля. Более точные результаты получают при прохождении тока по цепи «жила – жила», для этого выжиганием однофазные замыкания переводят в двух- и трехфазные или создают искусственную цепь «жила – оболочка кабеля», снимая заземление с цепи с двух сторон и подключая генератор к жиле и оболочке кабеля.

Силовые линии поля от тока цепи «жила – земля» представляют собой концентрические окружности, центром которых является ось кабеля. Ток, идущий по прямому и обратному проводам, создает два концентрических магнитных поля, действующих в противоположных направлениях (поле от пары токов). При расположении жил в горизонтальной плоскости результирующее поле на поверхности земли наибольшее, а при расположении жил в вертикальной плоскости – наименьшее. Поскольку кабели имеют скрутку жил, то в рамке, расположенной вертикально и перемещаемой вдоль трассы кабеля, будут индуцироваться ЭДС, изменяющиеся от минимума при вертикальном расположении жил до максимума при горизонтальном расположении жил. При отыскании повреждения следует помнить, что сигнал за местом повреждения затухает на расстоянии не более половины шага.

Этим методом определяют трассу кабеля, глубину его прокладки, место расположения соединительных муфт (по усилению звучания в телефоне из-за увеличенного расстояния между жилами). Для определения глубины прокладки кабеля сначала находят линию его трассы и проводят черту. Затем, располагая ось рамки под углом 45º к вертикальной плоскости, проходящей через ось кабеля, устанавливают место исчезновения в рамке индуцированной ЭДС. Расстояние от этого места до трассы, отмеченной чертой, равно глубине залегания кабеля. При наличии защитной металлической трубы уровень звука резко уменьшается, так как труба является экраном.

Метод накладной рамки применяют для непосредственного обнаружения места повреждения кабеля. Метод основан на том же принципе, что и индукционный, удобен при открытой прокладке кабеля. При прокладке кабеля в земле необходимо открыть несколько шурфов в зоне повреждения, после этого к жиле и оболочке или между двумя жилами подключают генератор. На кабель накладывают рамку и поворачивают ее вокруг оси. До места повреждения будут прослушиваться два максимума и два минимума сигнала от поля пары токов. За местом повреждения при вращении рамки будет прослушиваться монотонный сигнал, вызванный магнитным полем одиночного тока.

Читайте также:  Ремонт тонометра метро планерная

За последние 15 – 20 лет обслуживания подземных телекоммуникационных трассы усложнилось, т.к. эксплуатируемых трасс стало больше, а средний «возраст» их увеличился, активизировались строительные работы. В городских условиях существуют проблемы вскрытия асфальтного покрытия и высокий уровень электромагнитных помех широкого спектра.

3. Современные способы поиска трасс прохождения кабельных линий и их повреждений

В настоящее время появились новые способы поиска трасс. Раньше поисковые приборы были простыми, дешевыми и состояли из поисковой антенны с датчиком и миниатюрного встроенного приемника со звуковой индикацией. Степень фильтрации была невысока, часто приемник представлял собой усилитель низкой частоты, выдающий звук в «чистом виде», без обработки.

Новое поколение приборов для поиска трасс более эффективно, они точнее, но и значительно дороже. Для уменьшения электромагнитных помех усложнили фильтрующий блок, а городские акустические шумы потребовали акустической отстройки. Все это привело к увеличению габаритов и веса прибора, и для обеспечения комфортной работы персонала в современных приборах приемник и поисковую антенну разделили.

Дальнейшее развитие шло по пути расширения сервисных возможностей приборов, например, цифровая индикация глубины закладки кабеля и величины тока. Для этого ввели второй горизонтальный датчик и предусмотрели возможность строго-вертикального направления антенны. Для поиска трассы по минимуму сигнала был встроен еще и вертикальный датчик. Совместная работа вертикального и горизонтального датчиков позволяет искать трассу не только по максимуму или минимуму, как это было в традиционных методах, но и по инвертируемому сигналу. Такой способ называют по-разному: «супермаксимум», «максимум+» и т.д. Его достоинство заключается в том, что он объединяет точность поиска «по минимуму» с удобством поиска по максимуму (рис. 1).

Режим "супермаксимум" (в центре) объединяет удобство определения трассы по максимальному сигналу (слева) с точностью поиска по минимуму сигнала (справа)

Рисунок 1 – Режим «супермаксимум» (в центре) объединяет удобство определения трассы по максимальному сигналу (слева) с точностью поиска по минимуму сигнала (справа)

Появление датчиков с различной ориентацией приема сигнала позволило включить в комплекс измерений фазовый анализ, который дает дополнительные данные:

  • за счет использования вертикального датчика стало возможно определять место измерения: справа или слева от кабеля;
  • нахождение «своего» кабеля в местах схождения коммуникаций. Эта проблема по мере уплотнения коммуникаций приобрела особую актуальность. Было замечено, что направление тока в соседних трассах противоположно в каждый момент времени, что означает сдвиг фаз на 180°. Это используют как признак, разделяющий кабели;
  • определение топологии поля для определения места прокладки кабеля при помощи устройства, которое с помощью датчиков с различной ориентацией оценивает расстояние до кабеля, глубину залегания и показывает их на плане, сопровождая цифровыми показаниями уровня сигнала (рис. 2).

Устройство для изучения топологии магнитного поля

Рисунок 2 – Устройство для изучения топологии магнитного поля а – слева от измерителя показан «свой» кабель, сигнал от генератора направлен вперед по кабелю; б – справа от измерителя «чужой» кабель – сигнал возвращается к генератору

Этот метод (контактный метод) основан на том, что при протекании тока через поврежденную оболочку на земле возникает разность потенциалов. Эту разность потенциалов снимают штырями, которые подключают к приемнику вместо антенны. Контактный метод на несколько порядков чувствительнее методов, основанных на определении амплитуды. Возможен пассивный поиск подземных коммуникаций, без подключения генератора.

Вместе с тем контактный метод имеет два недостатка:

  • трудоемкость. Метод достаточно точный, если место дефекта известно хотя бы приблизительно. В противном случае требуется обследовать весь кабель. Для высокоомных дефектов зона чувствительности резко снижается: уже для повреждений с сопротивлением около 100 кОм зона обнаружения находится в радиусе более 1 м от повреждения. Найти такое повреждение сложно;
  • для городов с развитым асфальтным покрытием применение контактного метода невозможно. В сельской местности трудности связаны с особенностями ландшафта, почвы и погодных условий.

Для городских условий был разработан двухчастотный амплитудный метод, который может полностью заменить традиционный амплитудный метод, при котором повреждение ищут по резкому спаду сигнала. Недостатком традиционного поиска является то, что он должен быть непрерывным, а изменение сигнала может происходить по разным причинам. Двухчастотный амплитудный метод работает сразу на двух частотах: 273 Гц и 2 кГц. Низкочастотный сигнал 273 Гц чувствителен к повреждению изоляции, а сигнал с частотой 2 кГц является опорным и изменяется с глубиной залегания кабеля или положением относительно него измерителя точно так же, как и низкочастотный сигнал.

При отсутствии повреждения соотношение сигналов вдоль кабеля практически не изменяется. Если кабель поврежден, то изменение сигнала частотой 273 Гц значительно, а изменение сигнала 2 кГц практически не наблюдается.

Прибор анализирует соотношение уровня сигналов на двух частотах и определяет поврежденный участок, сравнивая соотношения сигналов на концах исследуемого участка. В городских условиях он работает на расстоянии до 100 м, что позволяет найти поврежденный участок кабеля на интервале1 км за 10 измерений. Затем на поврежденном участке можно провести следующие измерения, разбив его на более короткие отрезки. Это существенно облегчает работу специалистам-кабельщикам. Следует отметить, что чувствительность двухчастотного амплитудного метода на порядок выше традиционных способов поиска повреждений, а также позволяет проводить поиск на недоступных для измерения участках.

Облегчение и ускорение работы специалистов во все более усложняющихся условиях поиска трасс прокладки кабеля и поврежденных мест — общий итог применения всех перечисленных инновационных методов, разработанных в последние годы.

К сожалению, применение этих методов все еще сдерживается высокими ценами производителей на трассо-поисковые приборы.

Источник



Когда проводится проверка кабельных линий лабораторией?

Испытания кабельных линий проводятся со следующей периодичностью:

  • ежегодно — для силовых питающих и распределительных линий с резиновой изоляцией, обслуживающих объекты жизнеобеспечения населенных пунктов и других важных потребителей;
  • каждые 3 года — для основных питающих линий 6–35 кВ;
  • каждые 5 лет — для резервных линий.
  • Внеочередные – при аварийном отключении электрооборудования.

Испытание кабеля повышенным напряжением проводится для оценки соответствия величины сопротивления, коэффициента абсорбции и других параметров изолирующей оболочки установленным нормам. В процессе испытательных мероприятий выявляются дефекты, способные спровоцировать аварию и выход из строя дорогостоящего электрооборудования.

Определяемые характеристики.

  • Проверка целостности и фазировки жил кабеля;
  • Измерение сопротивления изоляции;
  • Испытание повышенным напряжением выпрямленного тока;
  • Испытание повышенным напряжением переменного тока частотой 50Гц.
  • Измерение распределения тока по одножильным кабелям;

Порядок проведения испытаний и измерений.

  • Изучение проектной документации.
  • Ознакомление с паспортами проверяемого оборудования.
  • Выполнение организационных и технических мероприятий при проведение измерений в действующих электроустановках.
  • Проверка работоспособности измерительных приборов в соответствие с инструкциями по эксплуатации.
  • Проведение испытаний в объеме требований главы 1.8 ПУЭ.

Методы испытаний.

1. Проверка целости и фазировки жил кабеля.

Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.

Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.

Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.

Рис. №1 Фазировка кабельных линий под напряжением.

а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.

Измерение сопротивления изоляции.

Измерение сопротивления изоляции высоковольтных кабелей проводят на полностью отключенном кабеле.

Перед проверкой необходимо проверить надёжность заземления кабельных воронок, брони и подключить к переносному заземлению со специальными зажимами (крокодилами). Второй конец кабеля остаётся свободным, жилы должны быть разведены на достаточное расстояние (примерно 150 — 200 мм).

В случае невозможности обеспечить требуемое расстояние между жилами и жил кабеля до заземлённых частей оборудования, на жилы надеваются изолирующие колпаки или накладки.

Перед началом измерений необходимо убедиться, что на испытываемом объекте нет

напряжения, тщательно очистить изоляцию от пыли. Измерения следует производить при устойчивом положении стрелки прибора; для этого нужно быстро, но равномерно, вращать ручку генератора (120 об/мин) в течение 60 сек. Сопротивление изоляции определяется показанием стрелки прибора мегаомметра. Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (не менее 100 мОм).

Читайте также:  Ремонт машин и оборудования екатеринбург

Мегаомметром поочерёдно измеряется сопротивление жил, при этом на свободные от измерения жилы устанавливается переносное заземление. Схема для измерения сопротивления изоляции силовых кабельных линий изображена на рисунке №2

Рис. №2 Схема измерения сопротивления изоляции силового кабеля.

Измерение сопротивления изоляции силовых и контрольных кабелей напряжением до 1000В проводят аналогично, при этом измерения производятся между каждыми двумя проводами (между фазами, между фазными жилами и нулем, между фазными жилами и защитным проводником и между нулевым и защитным проводником). При измерении разрешается объединять нулевой рабочий и нулевой защитный проводники. У четырехжильных кабелей измерение сопротивления изоляции нулевого проводника производится относительно заземленных частей электрооборудования.

Перед первыми или повторными измерениями КЛ должна быть разряжена путем соединения всех металлических элементов между собой и землей не менее чем на 2 мин. Сопротивление изоляции кабелей до 1 кВ должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Испытание повышенным напряжением выпрямленного тока.

Испытание изоляции кабельных линий повышенным напряжением выпрямленного тока производится с целью выявления местных сосредоточенных дефектов, которые не обнаруживаются при измерении мегаомметром, путем доведения их в процессе испытания до пробоя. Такое испытание повышенным напряжением выпрямленного тока производится от специальной установки типа: АИД-70, СКАТ-70 и т.п.

Напряжение от установки прикладывается поочередно к каждой фазе кабеля, при заземлении двух других фаз и оболочки кабеля (аналогично проведению измерения изоляции мегаомметром). Схема испытания кабеля повышенным напряжением выпрямленного тока изображена на рисунке №3.

Рис. №3 Испытание кабеля повышенным напряжением выпрямленного тока.

Изоляция одножильных кабелей без металлического экрана (оболочки, брони),

проложенных на воздухе, не испытываются. Изоляция одножильных кабелей с металлическим экраном (оболочкой, броней) испытываются между жилой и экраном. Изоляция многожильных кабелей без металлического экрана (оболочки, брони) испытываются между каждой жилой и остальными жилами, соединенными между собой и землей.

Изоляция многожильных кабелей с общим металлическим экраном (оболочкой, броней) испытывается между каждой жилой и остальными жилами, соединенными между собой и экраном (оболочкой, броней). При всех указанных выше видах испытаний металлические экраны (оболочки, броня) должны быть заземлены. Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей. Пластмассовые оболочки (шланги) кабелей, проложенных на воздухе не испытываются. Значение испытательного напряжения принимается в соответствии с таблицей №2

Испытательное напряжение кВ, для силовых кабелей.

Вид испытаний Испытательное напряжение (кВ) для кабельных линий
Кабели с бумажной изоляцией
До 1кВ 6кВ 10кВ
П 6 36 60
К 2,5 36 60
М 36 60
Вид испытаний Кабели с пластмассовой изоляцией
До 1кВ* 6кВ 10кВ
П 3,5 36 60
К 36 60
М 36 60
Вид испытаний Кабели с резиновой изоляцией
До 3кВ 6кВ 10кВ
П 6 12 20
К 6 12 20
М 6** 12** 20**

* — испытание повышенным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных в воздухе, не производится.

** — после ремонтов, не связанных с перемонтажом кабеля, изоляция проверяется мегаомметром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.

Для кабелей на напряжение до 10кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приёмосдаточных испытаниях 10 минут, в эксплуатации 5 минут. Для кабелей с резиновой изоляцией на напряжение 6-10кВ длительность приложения полного испытательного напряжения 5 минут.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице №3. абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытаний ток утечки должен уменьшаться. Если не происходит уменьшения тока утечки, а также при его увеличении или нестабильности, испытание производится до выявления дефекта, но не более чем 15 минут.

Допустимые токи утечки и значения коэффициента ассиметрии для силовых кабелей.

Кабели напряжением (кВ) Испытательное напряжение (кВ) Допустимые значения токов утечки (мА) Допустимые значения коэфф. ассиметрии
6 36 0,2 8
10 45 0,3 8
50 0,5 8
60 0,5 8

Разрешается техническому руководителю предприятия в процессе эксплуатации (М) исходя их местных условий как исключение уменьшать уровень испытательного напряжения для кабельных линий напряжением 6-10кВ до 0,4Uн.

Периодичность испытаний в процессе эксплуатации.

Кабели напряжением 2-35кВ:

а) 1 раз в год – для кабельных линий в течение первых 2 лет после ввода в эксплуатацию, а в дальнейшем:

  • 1 раз в 2 года – для кабельных линий, у которых в течение первых 2 лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях, 1 раз в год для кабельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции;
  • 1 раз в 3 года – для кабельных линий на закрытых территориях (подстанции, заводы и т.д.);во время капитальных ремонтов оборудования для кабельных линий, присоединённых к агрегатам, кабельных перемычек 6-10кв между сборными шинами и трансформаторами в ТП и РП;

б) Допускается не проводить испытание:

  • Для кабельных линий длиной до 100 метров, которые являются выводами из РУ и ТП на воздушные линии и состоящих из двух параллельных кабелей;
  • Для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число отказов из-за электрического пробоя составляет 30 и более отказов на 100 километров в год;
  • Для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5 лет;

в) Допускается распоряжением технического руководителя предприятия устанавливать

другие значения периодичности испытаний и испытательных напряжений:

  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет при числе соединительных муфт более 10 на 1 километр длины;
  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет, на которых смонтированы концевые заделки только типов КВВ и КВБ и соединительные муфты местного изготовления, при значении испытательного напряжения не менее 4Uн и периодичности не реже 1 раза в 5 лет.
  • Для кабельных линий напряжением 20-35кВ в течение первых 15 лет испытательное напряжение должно составлять 5Uн, а в дальнейшем 4Uн.

6.3.8 Кабели на напряжение 3-10кВ с резиновой изоляцией:

  • в стационарных установках – 1 раз в год;
  • в сезонных установках – перед наступлением сезона;
  • после капитального ремонта агрегата, к которому присоединен кабель.

Измерение распределения тока по одножильным кабелям

На силовом кабеле измеряются токи, протекающие как в жилах, так и в металлических оболочках и броне. Измерения производятся токоизмерительными клещами.

В зависимости от материала оболочки, брони и положения кабеля в пространстве токи в них могут достигать 100% по отношению к току жилы и сильно влиять на нагрев кабелей. Одновременно с измерением токов при нагрузках, близких к номинальной, должны быть проведены измерения температуры наружных покровов кабелей, по которой может быть вычислена температура жилы. Эта температура должна измеряться в самом нагретом месте КЛ и не должна превосходить допустимую для данного места измерения. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность всей группы кабелей, должны быть приняты меры по выравниванию токов по фазам.

Источник

Проверка кабеля связи

Перед прокладкой линий связи, а также после окончания монтажа необходимо проверить у всех кабелей:

  • герметичность наружной оболочки;
  • величину сопротивления изоляции токоведущих жил и ее соответствие стандартным значениям;
  • целостность экрана и отсутствие обрывов в жилах;
  • наличие или отсутствие коротких замыканий между токоведущими жилами, жилами и металлической оболочкой или экраном;
  • величину сопротивления изоляции защитного шланга у кабелей с алюминиевой или стальной защитной оболочкой и ее соответствие значениям, установленным для каждой конкретной марки.

Герметичность наружной оболочки

Контрольным испытаниям на герметичность подвергаются строительные длины кабелей связи перед укладкой в траншеи, затяжки в каналы кабельной канализации и пр., после проведения этих операций, а также по окончанию установки соединительных и ответвительных муфт. Тестирование проводится с помощью компрессорных установок, баллонов со сжатым воздухом, оснащенных редукторами или специальных ультразвуковых течеискателей. Целостность оболочки и герметичность установки муфт определяется согласно показаниям манометров.

Читайте также:  Ремонт телефона город калуга

В кабелях, имеющих металлическую оболочку, подача воздуха и подключение манометра осуществляется через припаянные к оболочке клапана. Контроль герметичности в кабелях с полиэтиленовой оболочкой проводится с использованием специальных втулок со встроенными вентилями. Этот вид проверки не применяется для кабелей, в конструкции которых предусмотрено заполнение пустот между токоведущими жилами гидрофобными материалами. Целостность оболочки в кабелях этой группы проверяется многофункциональными приборами, например, ИРК-ПРО, посредством которых можно замерить сопротивление изоляции оболочки по отношению к «земле». Результат измерений сопротивления для неповрежденной оболочки, пересчитанный с учетом коэффициентов на длину линии один км и эталонную температуру воздуха 200C, должен превышать значение величиной 5 МОм. Проверка герметичности также производится после восстановления оболочки после ремонта, если в результате проведения каких-либо работ рабочие повредили кабель связи.

Замер сопротивления изоляции токопроводящих жил

Измерение величины сопротивления изоляции токопроводящих жил в кабелях связи до прокладки позволяет определить наличие в нем скрытых повреждений, причиной которых стала неправильная транспортировка. Контрольные замеры после прокладки дают возможность выявить возможные нарушения целостности изоляции после окончания монтажных работ. Конкретные значения сопротивлений изоляции регламентируются нормативно-техническими документами, в том числе ГОСТ 15125-92.

Измерения проводятся цифровыми или стрелочными мегомметрами, а также при помощи ранее описанных приборов типа ИРК-ПРО. Анализ результатов измерений выполняется с учетом влажности воздуха, температуры в момент замера и длины кабельной линии.

Целостность экрана и отсутствие обрывов в жилах

Контрольные испытания по выявлению оборванных жил в кабеле должно выполняться как до монтажа линии, так и после ее прокладки. Такая проверка требует проведения предварительных работ, включающих удаление оболочки и поясной изоляции с обоих концов испытуемого кабеля. Длина зачищаемого участка, в зависимости от конкретных условий, колеблется от 150 до 400 мм. Следует помнить, что нити или ленты, которые скрепляют элементарные пучки кабеля, а также их повивы разрезать не следует.

После удаления части оболочки и лент поясной изоляции необходимо на любом из концов кабеля со всех жил удалить изоляцию и выполнить соединение оголенных жил между собой посредством медного неизолированного провода. Закороченные между собой жилы соединяются с металлической оболочкой кабеля или его экраном.

Наличие обрыва проводят при помощи микротелефонной трубки и источника питания со стороны с не закороченными жилами.

Для этого экран или металлическая оболочка кабеля через независимый источник питания (батарею элементов, аккумулятор) подключается к одному выводу микротелефонной трубки, а свободный вывод последовательно прикладывается к каждой жиле. Отсутствие щелчка в динамике свидетельствует о наличии обрыва в исследуемой жиле. Обрыв кабеля связи можно также определить при помощи специального прибора, ранее упоминавшегося в статье.

Наличие коротких замыканий («сообщений»)

Исследование кабеля на возможное наличие «сообщений» токоведущих жил между собой или с экраном (металлической оболочкой) проводится со стороны закороченных жил. Как и при определении возможного обрыва один вывод микротелефонной трубки через источник

питания подключается к экрану (металлической оболочке). Далее от общего закороченного пучка поочередно отделяют жилу, к которой присоединяют второй конец трубки. Звуковой щелчок в динамике является индикатором того, что эта жила закорочена на соседнюю или металлическую оболочку (экран) кабеля.

Поврежденные жилы, выявленные в результате проверки на обрыв и короткое замыкание, отделяются от других и маркируются. Результат проверки кабелей связи заносятся в журнал с указанием повива, пучка и пары, в которых выявлен дефект, а также типа повреждения.

Замер сопротивления изоляции наружного защитного шланга кабелей с металлической оболочкой

Эти испытания позволяют обнаружить наличие повреждений защитного шланга. Производятся при помощи мегомметров или специального прибора типа ИРК-ПРО.

Проводимые контрольные измерения позволяют выявить повреждения внутри кабелей связи и определить пути их устранения.

Источник

Определение места повреждения кабеля

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Источник